APPENDIX M-1. ## Dependent Variable-Covariate Associations for the Renal Assessment This appendix contains results of tests of association between each dependent variable and candidate covariates for the adjusted analysis of each dependent variable. Pearson's chi-square test (continuity-adjusted for 2×2 tables) is used for the significance testing of the associations between each discrete dependent variable and the candidate covariate. When a candidate covariate is continuous in nature (for example, age), the covariate is discretized prior to the analysis of the discrete dependent variable. Pearson's correlation coefficient is used for significance testing of the associations between each continuous dependent variable and a continuous candidate covariate. When a candidate covariate is discrete in nature, means (transformed back to the original scale, if necessary) are presented and an analysis of variance is used to investigate the difference between the means. Table M-1-1. Dependent Variable-Covariate Associations for the Renal Assessment | Dependent
Variable | Level | Age | | | Occupation | | | | | |--------------------------------------|----------|---------------------|--------------------|------------------|------------------|-----------------------------|------------------------|---------|--| | | | Born
≥1942 | Born
<1942 | p-Value | Officer | Enlisted
Flyer | Enlisted
Groundcrew | p-Value | | | Kidney
Disease | Yes | (n=947)
13.2% | (n=1,235)
18.8% | 0.001 | (n=843)
15.4% | (n=358)
15.6% | (n=981)
17.4% | 0.472 | | | Kidney
Stones from
KUB X Ray | Present | (n=956)
1.9% | (n=1,277)
3.6% | 0.023 | (n=869)
3.5% | (n=365)
3.3% | (n=999)
2.2% | 0.236 | | | Urinary
Protein | Present | (n=953)
3.8% | (n=1,276)
5.2% | 0.145 | (n=869)
3.6% | (n=363)
4.7% | (n=997)
5.4% | 0.162 | | | Urinary Red
Blood Cell
Count | Abnormal | (n=953)
2.6% | (n=1,276)
2.8% | 0.879 | (n=869)
1.7% | (n=363)
2.2% | (n=997)
3.8% | 0.018 | | | Urinary
White Blood
Cell Count | Abnormal | (n=953)
2.2% | (n=1,276)
3.5% | 0.109 | (n=869)
2.0% | (n=363)
4.7% | (n=997)
3.1% | 0.031 | | | Serum
Creatinine ^a | | n=2,232
r=0.061 | | n=2,232
0.004 | | (n=364)
$\bar{x}=0.9591$ | | 0.125 | | | Urine
Specific
Gravity | | n=2,229
r=-0.037 | | n=2,229
0.081 | ` | (n=363)
$\bar{x}=1.0182$ | _, , | <0.001 | | ^a Analysis performed on natural logarithm scale; means transformed from natural logarithm scale. Table M-1-1. (Continued) Dependent Variable-Covariate Associations for the Renal Assessment | Dependent | Level | Race | | | Diabetic Class | | | | |--------------------------------------|----------|------------------|-------------------------------|---------|-------------------------------|-----------------------------|-----------------------------|---------| | Variable | | Black | Non-Black | p-Value | Normal | Impaired | Diabetic | p-Value | | Kidney
Disease | Yes | (n=130)
12.3% | (n=2,052)
16.6% | 0.244 | (n=1,621)
14.7% | (n=241)
17.4% | (n=317)
24.0% | < 0.001 | | Kidney Stones
from KUB X
Ray | Present | (n=131)
2.3% | (n=2,102)
2.9% | 0.891 | (n=1,653)
2.9% | (n=251)
2.8% | (n=326)
2.8% | 0.987 | | Urinary
Protein | Present | (n=131)
7.6% | (n=2,098)
4.4% | 0.131 | (n=1,651)
2.7% | (n=251)
4.8% | (n=325)
13.9% | < 0.001 | | Urinary Red
Blood Cell
Count | Abnormal | , , | (n=2,098)
2.5% | 0.007 | (n=1,651)
2.6% | (n=251)
3.6% | (n=325)
2.8% | 0.674 | | Urinary White
Blood Cell
Count | Abnormal | (n=131)
5.3% | (n=2,098)
2.8% | 0.151 | (n=1,651)
2.4% | (n=251)
2.8% | (n=325)
5.9% | 0.003 | | Serum
Creatinine ^a | | | (n=2,101)
$\bar{x}=0.9692$ | <0.001 | (n=1,653)
$\bar{x}=0.9750$ | (n=251)
$\bar{x}=0.9877$ | (n=326)
$\bar{x}=0.9584$ | 0.081 | | Urine Specific
Gravity | | | (n=2,098)
$\bar{x}=1.0188$ | 0.069 | (n=1,651)
$\bar{x}=1.0186$ | (n=251)
$\bar{x}=1.0194$ | (n=325)
$\bar{x}=1.0198$ | 0.002 | ^a Analysis performed on natural logarithm scale; means transformed from natural logarithm scale.